We address the generalized thermodynamics and the collapse of a system of self-gravitating Langevin particles exhibiting anomalous diffusion in a space of dimension D. This is a basic model of stochastic particles in interaction. The equilibrium states correspond to polytropic configurations similar to stellar polytropes and polytropic stars. The index n of the polytrope is related to the exponent of anomalous diffusion. We consider a high-friction limit and reduce the problem to the study of the nonlinear Smoluchowacute;ski-Poisson system. We show that the associated Lyapunov functional is the Tsallis free energy. We discuss in detail the equilibrium phase diagram of self-gravitating polytropes as a function of D and n, and determine their stability by using turning point arguments and analytical methods. When no equilibrium state exists, we investigate self-similar solutions of the nonlinear Smoluchowski-Poisson system describing the collapse. Our stability analysis of polytropic spheres can be used to settle the generalized thermodynamical stability of self-gravitating Langevin particles as well as the nonlinear dynamical stability of stellar polytropes, polytropic stars and polytropic vortices. Our study also has applications concerning the chemotactic aggregation of bacterial populations.
Read full abstract