Animals were trained to discriminate two natural odors while another group was trained to discriminate between a patterned electrical stimulation distributed on the lateral olfactory tract (LOT), labelled olfaco-mimetic stimulation (OMS), used as an olfactory cue versus a natural odor. No statistically significant difference was observed in behavioral data between these two groups. The animals trained to learn the meaning of the OMS exhibited a gradual long-term potentiation (LTP) phenomenon in the piriform cortex. When a group of naive animals was pseudo-conditioned, giving the OMS for the same number of sessions but without any olfactory training, no LTP was recorded. These results indicate that the process of learning olfactory association gradually potentiates cortical synapses in a defined cortical terminal field, and may explain why LTP in the piriform cortex is not elicited by the patterned stimulation itself, but only in an associative context. As olfactory and hippocampus regions are connected via the lateral entorhinal cortex, the olfactomimetic model was used to study the dynamic of involvement of the dentate gyrus (DG) in learning and memory of this associative olfactory task. Polysynaptic field potentials, evoked by the LOT stimulation, were recorded in the molecular layer of the ipsilateral DG. An early and rapid (2nd session) potentiation was observed when a significant discrimination of the two cues began to be observed. The onset latency of the potentiated response was 30–40 ms. When a group of naive animals was pseudoconditioned, no change was observed. Taken together, these results support the hypothesis that early activation of the DG during the learning of olfactory cue allows the progressive storage of olfactory information in a defined set of potentiated cortical synapses. The onset latency of the polysynaptic potentiated responses suggests the existence of a reactivating hippocampal loops during the processing of olfactory information.
Read full abstract