In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines <svg style="vertical-align:-5.15834pt;width:110.175px;" id="M1" height="24.299999" version="1.1" viewBox="0 0 110.175 24.299999" width="110.175" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.625,17.25)"><path id="x1D454" d="M546 430q-14 -33 -37.5 -140t-38.5 -209q-29 -195 -156 -289q-29 -21 -70 -37t-78 -16q-62 0 -102.5 37t-40.5 69q0 27 26 48q19 15 25 -3q13 -43 46.5 -69t87.5 -26q55 0 83 21q29 22 50 65t43 140q14 64 29 163h-2q-55 -81 -149 -152q-59 -44 -102 -44q-23 0 -43.5 30
t-20.5 85q0 74 32.5 145.5t84.5 117.5q40 35 100 58.5t117 23.5q21 0 65 -8q30 -6 44 -6zM456 386q-40 16 -81 16q-29 0 -64 -13q-42 -17 -85 -97q-19 -36 -31.5 -86t-12.5 -86q0 -64 30 -64q20 0 52.5 21t60.5 52q74 81 95 123q26 62 36 134z" /></g> <g transform="matrix(.012,-0,0,-.012,10.3,22.288)"><path id="x1D45A" d="M766 88q-40 -45 -83.5 -72.5t-63.5 -27.5q-39 0 -16 103l49 224q15 68 -10 68q-36 0 -112.5 -78.5t-105.5 -133.5q-27 -101 -38 -165q-35 -4 -77 -18l-6 6q42 153 70 288q12 55 10 78t-19 23q-38 0 -114 -80.5t-101 -131.5q-24 -68 -41 -165q-36 -3 -76 -18l-8 6
q56 202 87 347q7 33 -3 33q-8 0 -31.5 -17.5t-41.5 -35.5l-12 28q42 45 84 72t63 27q44 0 10 -124l-20 -75h2q92 121 193 178q36 21 64 21q62 0 28 -159l-8 -37h2q50 67 103.5 112t94.5 65q39 19 62 19q60 0 23 -156l-45 -189q-9 -39 2 -39q17 0 71 49z" /></g><g transform="matrix(.012,-0,0,-.012,19.688,22.288)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.012,-0,0,-.012,22.401,22.288)"><path id="x1D44F" d="M452 333q0 -82 -46 -164t-116 -128q-81 -53 -158 -53q-26 0 -51 13t-37 32q-26 41 -6 134l91 431q7 40 2.5 47t-34.5 7h-33l2 25q36 4 72.5 13t58.5 15.5t28 6.5q10 0 4 -29l-91 -391h2q65 77 130 116.5t105 39.5q36 0 56.5 -32t20.5 -83zM365 316q0 76 -35 76
q-31 0 -93.5 -49t-107.5 -110q-12 -37 -17 -70q-9 -65 12 -96.5t59 -31.5q31 0 56 14q53 29 89.5 105t36.5 162z" /></g> <g transform="matrix(.017,-0,0,-.017,28.6,17.25)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,34.482,17.25)"><path id="x1D461" d="M324 430l-26 -36l-112 -4l-55 -265q-13 -66 7 -66q13 0 44.5 20t50.5 40l17 -24q-38 -40 -85.5 -73.5t-87.5 -33.5q-50 0 -21 138l55 262h-80l-2 8l25 34h66l25 99l78 63l10 -9l-37 -153h128z" /></g><g transform="matrix(.017,-0,0,-.017,40.278,17.25)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g><g transform="matrix(.017,-0,0,-.017,50.868,17.25)"><path id="x3D" d="M535 323h-483v50h483v-50zM535 138h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,65.572,17.25)"><use xlink:href="#x1D461"/></g> <g transform="matrix(.012,-0,0,-.012,71.375,9.1)"><use xlink:href="#x1D45A"/></g> <g transform="matrix(.017,-0,0,-.017,81.388,17.25)"><path id="x1D452" d="M391 364q0 -28 -20.5 -53.5t-50 -43.5t-70 -34t-73.5 -25t-68 -17v-29q0 -48 20 -81t65 -33q73 0 157 76l16 -23q-107 -113 -221 -113q-21 0 -40.5 6.5t-39 22t-31.5 47t-12 75.5q0 69 33.5 139.5t95.5 114.5q77 55 143 55q42 0 69 -24.5t27 -59.5zM313 350
q0 26 -14.5 40.5t-37.5 14.5q-32 0 -44 -7q-82 -46 -104 -175q200 49 200 127z" /></g> <g transform="matrix(.012,-0,0,-.012,88.425,9.1)"><path id="x2212" d="M535 230h-483v50h483v-50z" /></g><g transform="matrix(.012,-0,0,-.012,95.41,9.1)"><use xlink:href="#x1D44F"/></g><g transform="matrix(.012,-0,0,-.012,100.99,9.1)"><use xlink:href="#x1D461"/></g> <g transform="matrix(.017,-0,0,-.017,105.675,17.25)"><use xlink:href="#x2C"/></g> </svg> <svg style="vertical-align:-0.546pt;width:40.287498px;" id="M2" height="12.725" version="1.1" viewBox="0 0 40.287498 12.725" width="40.287498" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,6.288,11.413)"><use xlink:href="#x1D461"/></g><g transform="matrix(.017,-0,0,-.017,16.793,11.413)"><path id="x2265" d="M531 285l-474 -214v56l416 183l-416 184v56l474 -215v-50zM531 -40h-474v50h474v-50z" /></g><g transform="matrix(.017,-0,0,-.017,31.497,11.413)"><path id="x30" d="M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105
q0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z" /></g> </svg> are born by <svg style="vertical-align:-2.3205pt;width:52.112499px;" id="M3" height="16.200001" version="1.1" viewBox="0 0 52.112499 16.200001" width="52.112499" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.625,12.687)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,6.507,12.687)"><use xlink:href="#x1D45A"/></g><g transform="matrix(.017,-0,0,-.017,23.692,12.687)"><path id="x2B" d="M535 230h-212v-233h-58v233h-213v50h213v210h58v-210h212v-50z" /></g><g transform="matrix(.017,-0,0,-.017,37.444,12.687)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.017,-0,0,-.017,45.604,12.687)"><use xlink:href="#x29"/></g> </svg>-times convolution of the exponential <svg style="vertical-align:-3.27605pt;width:25.525px;" id="M4" height="21.9625" version="1.1" viewBox="0 0 25.525 21.9625" width="25.525" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.625,17.25)"><use xlink:href="#x1D452"/></g> <g transform="matrix(.012,-0,0,-.012,7.662,9.1)"><use xlink:href="#x2212"/></g><g transform="matrix(.012,-0,0,-.012,14.647,9.1)"><use xlink:href="#x1D44F"/></g><g transform="matrix(.012,-0,0,-.012,20.228,9.1)"><use xlink:href="#x1D461"/></g> </svg> by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG). Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.
Read full abstract