This study identified a 140 kDa polypeptide as a putative specific component of Purkinje cell spines' postsynaptic densities and which began to appear during the critical period of cerebellar cortex synaptogenesis. Mouse cerebellar cortices at postnatal days 5, 7, 9, 11, 15 and young adult, between days 30 and 40, were used to purify subcellular fractions of synaptosomes, synaptic membranes and postsynaptic densities. The purity of the subcellular fractions was assessed by electron microscopy and the protein composition of the different fractions was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polypeptides of apparent molecular weights of 25, 26, 27, 30, 33, 37, 43, 45, 52, 64, 74, 85, 94, 110, 125, 130, 165 and 174 kDa were found in the synaptosomal fractions of all the ages studied, even before the critical period of synaptogenesis, at postnatal day 7, when the postsynaptic densities were still nonexistent, indicating that the polypeptides are nonspecific constituents of these structures. On the other hand, a 140 kDa polypeptide was detected in the postsynaptic density fractions at postnatal day 11, immediately after postsynaptic structures began to appear, suggesting the possibility that this protein is a specific component of the cerebellar cortex postsynaptic densities. The 140 kDa polypeptide was electroeluted from the gel and analysed for its amino acid composition by reverse-phase high-pressure liquid chromatography. The analysis showed that this protein has a high content of nonpolar amino acid residues, such as leucine, isoleucine, glycine, phenylalanine and valine. A hypothetical model relative to the participation of the 140 kDa protein in the molecular organization of the postsynaptic density is suggested which may contribute to the understanding of the role played by this structure in synaptic function.
Read full abstract