Multiplex PCR is a critical step when preparing amplicon library for next-generation sequencing. However, there are several challenges related to multiplex PCR including poor uniformity, nonspecific amplification, and primer-dimers. To address these issues, we propose a novel solution strategy that involves using a low cycle number (<10 cycles) in multiplex PCR and then employing carrier DNAs and magnetic beads for the selection of targeted products. This technique improves the amplicon uniformity while also reducing primer-dimers and PCR artifacts. To evaluate our technique, we initially utilized 120 DNA fragments from mouse genome containing single nucleotide polymorphism (SNP) sites. Sequencing results demonstrated that with only 7 cycles of multiplex PCR, 95.8% of the targeted SNP sites were mapped, with a coverage of at least 1×. The average sequencing depth of all amplicons was 1705.79±1205.30×; 87% of them reached a coverage depth that exceeded 0.2-fold of the average sequencing depth. Our method had a greater uniformity (87%) when compared to Hi-Plex PCR (53.3%). Furthermore, we validated our strategy by randomly selecting 90 primer pairs twice from the initial set of 120 primer-pairs. Next, we used the same protocol to prepare amplicon libraries. The two groups had an average sequencing depth of 1013.30±585.57× and 219.10±158.27×, respectively; over 84% of the amplicons had a sequencing depth that exceeded 0.2-fold of average depth. These results suggest that the use of a low cycle number in multiplex PCR is a cost-effective and efficient approach for the preparation of amplicon libraries.
Read full abstract