The anomalous distribution of adhesive proteins throughout on the cell surface of the Mycobacterium tuberculosis H37 Rv and their contribution in cell surface adhesion and host-pathogen interaction remain elusive. The completion of M. tuberculosis H37 Rv genome sequence analysis gives some interesting information about polymorphic GC-rich repetitive sequence (PGRS) subfamily of M. tuberculosis that encodes fibronectin binding proteins (FnBP), which have been extensively studied, but the function in the pathogenesis of most of these proteins remains unknown and unclear. This review addresses the M. tuberculosis entry mechanism in the host cell. In particular, an effort has been made to focus on several aspects, (a) association of FnBP encodes by PE_PGRS protein family of M. tuberculosis during host-pathogen interactions. (b) Effect of calcium ions in and outside of the host cell is overriding to maintenance of calcium trafficking in phagocytosis. Furthermore, FnBP may be a potential source of antigenic variation that participating in evoking immune response. M. tuberculosis entry mechanism does not have a major influence alone, involvement of calcium ions, perhaps shed light on host-pathogen interaction relationship, and could open up new avenues for development of novel drug by targeting M. tuberculosis FnBP and blockade of selective adhesions could be useful for therapeutics.
Read full abstract