Periphery blood testing is an attractive and relatively less invasive way of early cancer screening. In this work, based on the latest understanding of the pivotal role of platelets in promoting cancer invasion, a method for detecting a procancerous protein overexpressed both on platelets and in cancer cells is developed. As a kinase, the enzymatic activity, abundance, and self-phosphorylation of this protein are all important factors influencing its procancerous activity. To simultaneously determine these three important biochemical parameters, electrochemical control is called upon to connect or disconnect a polymer chain reaction (PCR) primer with a small-molecule synthetic probe, and with the target protein, in a target-specific manner. The resulting PCR signal amplification greatly improves the sensitivity of the design and also enables direct detection of the protein and its catalytic activity as well as its self-phosphorylation in clinical periphery blood samples from hepatocellular carcinoma (HCC) patients. This may point to future application of the proposed method in the early screening of HCC to assist its diagnosis and treatment.
Read full abstract