ObjectiveTo determine the effects of using K18-methyl methacrylate (K18-MMA) and K18-Filler on composite cure, esthetic, mechanical, polymerization shrinkage, and antimicrobial properties. MethodsK18-MMA (0–20% w/w) was used to replace TEGDMA in a 70:30 Bis-GMA:TEGDMA composite filled to 70% w/w with barium glass or K18-Filler. Composite degree of cure (Rockwell15T hardness and near Infrared FTIR), hydrophilicity (contact angle measurements), translucency (transparency parameter measurements, TP), mechanical (3-point bend test), polymerization shrinkage (volumetric shrinkage and shrinkage stress), and antimicrobial properties (colony counting assay) against Streptococcus mutans, Streptococcus sanguinis, and Candida albicans were determined. ResultsAll experimental groups had comparable degrees of cure (near Infrared FTIR and Rockwell15T Hardness), TP, moduli, polymerization volumetric shrinkages and shrinkage stresses to those of controls (Bonferroni corrected p > 0.0018). Only one group (15% K18-MMA+K18-Filler) had significantly different (lower) contact angles as compared to that of controls (Bonferroni corrected p < 0.0018). Most of the K18-Filler-containing composites had significantly lower ultimate transverse strengths (UTS) than controls (Bonferroni corrected p < 0.0018). Controls had significantly greater S mutans colony counts than 15% and 20% w/w K18-MMA+K18-Filler groups, and greater S sanguinis and C albicans colony counts than K18-containing groups. Of the composites with that provided significant antimicrobial properties against S. mutans, S. sanguinis, and C. albicans, only the 20% K18-MMA+K18-Filler group had significantly lower UTS than controls. SignificanceComposites with K18-MMA and K18-Filler with comparable physical properties to control composites and significant antimicrobial properties have been developed. K18-MMA and K18-Filler seem to be suitable for incorporation into commercial dental resins.
Read full abstract