Dinuclear copper(II) complex [Cu2(L)2(μ2-1,1-N3)2(N3)2] (1) with double μ1,1-azido bridges and polynuclear nickel(II) complex [Ni(L)(μ2-1,1-N3)(μ2-1,3-N3)]n (2) with alternate double μ1,1-azido and μ1,3-azido bridges [L = 1-amino-2-(dimethylamino)ethane, N 3 − = azide ion] have been synthesized and were characterized by physicochemical and spectroscopic methods. X-ray structural analysis revealed that each Cu(II) center of 1 adopts a distorted square-pyramidal geometry with a CuN5 chromophore ligated through two N atoms of L, two N atoms of double bridging (μ1,1-N3), and one N atom of terminal azide ion. On the other hand, each Ni(II) center around the asymmetric unit of 2 adopts a distorted octahedral geometry with a NiN6 chromophore ligated through two N atoms of L, two N atoms of double μ1,1-N3, and two N atoms of double μ1,3-N3 bridges. The adjacent nickel centers are connected to alternate double μ1,1-N3 and double μ1,3-N3 bridges, affording a one-dimensional (1D) polymeric chain structure. Temperature-dependent magnetic susceptibility measurements evidenced a dominant antiferromagnetic interaction between the metal centers of both complexes 1 and 2.
Read full abstract