Nucleic acid testing (NAT) has been widely used in many fields such as medical diagnosis, food safety testing and forensic identification. However, it can only be carried out in professional laboratory because the test process is complicated and rigorous. In this paper, a nucleic acid amplification system based on polymerase chain reaction (PCR) was developed to meet the requirements of point-of-care testing (POCT) for nucleic acids. Firstly, the mechanical structure and electronic control system were designed and constructed. Secondly, an integral separation PID algorithm for temperature control and an intelligent temperature compensation method based on support vector regression (SVR) were proposed. Finally, temperature measurement and biological experiments were performed to prove the stability and availability of the nucleic acid amplification system. The results showed that the system achieved a rapid temperature change velocity of 4.5 °C/s, and the steady-state error was within ± 0.5 °C. The nucleic acids in samples of different concentrations were well amplified, the system can be used for quantitative detection of nucleic acid with the help of a fluorescence detection system, and has higher sensitivity than Tianlong PCR instrument.