This article deals with the electrophoresis of hydrophobic colloids absorbed by a layer of polymers with an exponential distribution of the polymer segments. The functional groups present in the polymer layer further follow the exponential distribution. We made an extensive mathematical study of the electrophoresis of such core-shell structured soft particles considering the combined impact of heterogeneity in polymer segment distribution, ion steric effect, and hydrodynamic slippage of the inner core. The mathematical model is based on the flat-plate formalism and deduced numerical results for electrophoretic mobility are valid for weak to highly charged particles for which the particle size well exceeds the Debye-layer thickness. In addition, we have derived closed form analytical results for electrophoretic mobility of the particle under several electrohydrodynamic limits. We have further illustrated the results for electrophoretic mobility considering a charged and hydrophobic inner core coated with an uncharged polymer layer or a polymer layer that entraps either positive or negatively charged functional groups. The impact of pertinent parameters on the overall electrophoretic motion is furtherillustrated.