Abstract

A combined analytical–numerical study is presented for the slow motion of a spherical particle coated with a layer of adsorbed polymers perpendicular to an infinite plane, which can be either a solid wall or a free surface. The Reynolds number is assumed to be vanishingly small, and the thickness of the surface polymer layer is assumed to be much smaller than the particle radius and the spacing between the particle and the plane boundary. A method of matched asymptotic expansions in a small parameter λ incorporated with a boundary collocation technique is used to solve the creeping flow equations inside and outside the adsorbed polymer layer, where λ is the ratio of the characteristic thickness of the polymer layer to the particle radius. The results for the hydrodynamic force exerted on the particle in a resistance problem and for the particle velocity in a mobility problem are expressed in terms of the effective hydrodynamic thickness (L) of the polymer layer, which is accurate to O(λ2). The O(λ) term forLnormalized by its value in the absence of the plane boundary is found to be independent of the polymer segment distribution and the volume fraction of the segments. The O(λ2) term forL, however, is a sensitive function of the polymer segment distribution and the volume fraction of the segments. In general, the boundary effects on the motion of a polymer-coated particle can be quite significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call