This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme. Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery. Imatinib Mesylate (IMT) is one of the most effective drugs for GBM, but its primary issue is low bioavailability. Therefore, nanotechnology presents a promising solution for targeted IMT delivery to GBM. This article primarily explores the fabrication of IMT-loaded core-shell lipid-polymer hybrid nanoparticles (CSLHNPs) to achieve enhanced brain delivery with therapeutic efficacy. The primary objective of this study is to develop optimized, stable IMT-loaded hybrid nanoparticles with an encapsulated polymer matrix and to evaluate these nanoparticles using sophisticated instruments such as SEM and TEM to achieve smooth, spherical nanoparticles in a monodispersed phase. The enhanced stable formulation yielded a notable increase in entrapment efficiency, reaching 58.89 ± 0.5%. The physical stability analysis of nanoparticles was assessed over 30 days under conditions of 25 ± 2°C and 60 ± 5% relative humidity. Hemolytic assays affirmed the biocompatibility and safety profile of the nanoparticles. in vitro drug release kinetics revealed a sustained IMT release over 48 hours. The formulated CSLHNPs achieved a narrow size distribution with a mean vesicle diameter of 155.03 ± 2.41 nm and a low polydispersity index (PDI) of 0.23 ± 0.4, indicating monodispersity. A high negative zeta potential of -23.89 ± 3.47 mV ensured excellent colloidal stability in physiological conditions. XRD analysis confirmed the successful encapsulation of IMT within the nanoparticle matrix, with the drug transitioning to an amorphous state for enhanced dissolution. During Cell-Cell viability assays on LN229, glioblastoma cells were treated with IMT-loaded nanoparticles and showed a significantly enhanced inhibitory effect compared to free IMT. These hybrid nanoparticles demonstrated potential in reducing oxidative stress-induced cellular damage by mitigating reactive oxygen species (ROS). Thus, the prepared IMT hybrid nanoparticles showed higher cellular uptake and superior cytotoxicity compared to the plain drug. This study posits the IMT-PLGA-TPGS-DSPE PEG 2000-CSPLHNPs as a formidable and innovative drug delivery system for Glioblastoma Multiforme (GBM) treatment, warranting further exploration into their clinical application potential. Future work could involve conducting in vivo studies to evaluate the pharmacokinetics, biodistribution, and therapeutic efficacy of the IMT-PLGA-TPGS-DSPE PEG 2000-CSPLHNPs in animal models of Glioblastoma Multiforme (GBM). Additionally, further research may focus on optimizing the nanoparticle formulation for enhanced targeting capabilities, investigating long-term stability under varied storage conditions, exploring potential combination therapies to synergize with the nanoparticles, and assessing the scalability and manufacturability of the developed drug delivery system for potential clinical translation. Integration of advanced imaging techniques for real- time tracking and visualization of nanoparticle distribution within tumours could also be a promising direction for future investigations.
Read full abstract