The control of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from the flue gas in hazardous waste incinerators (HWIs) is an intractable problem. To figure out the formation mechanism of PCDD/Fs and reduce the emission, a field study was carried out in a full-scale HWI. Ca(OH)2 & (NH4)H2PO4 or CH4N2S & (NH4)H2PO4 were injected into the quench tower, and the detailed inhibition effect on PCDD/Fs formation by the inhibitors coupled with quench tower was studied. Gas and ash samples were collected to analyze PCDD/Fs. XPS, EDS characterization and Principal component analysis were adopted to further analyze the de novo and precursors synthesis. The PCDD/Fs emissions reduced from 0.135 ng I-TEQ/Nm3 to 0.062 or 0.025 ng I-TEQ/Nm3 after the injection of Ca(OH)2 & (NH4)H2PO4 or CH4N2S & (NH4)H2PO4, respectively. The quench tower was found mainly hindering de novo synthesis by reducing reaction time. CP-route was the dominant formation pathway of PCDD/Fs in quench tower ash. Ca(OH)2 & (NH4)H2PO4 effectively inhibit precursors synthesis and reduce proportions of organic chlorine from 4.11% to 2.86%. CH4N2S & (NH4)H2PO4 show good control effects on both de novo and precursors synthesis by reducing chlorine content and inhibiting metal-catalysts. Sulfur-containing inhibitors can cooperate well with the quench tower to inhibit PCDD/Fs formation and will be effective to reduce dioxins formation in high chlorine flue gas. The results pave the way for further industrial application of inhibition to reduce PCDD/Fs emissions in the HWIs flue gas.
Read full abstract