The paper industry has long been a crucial part of our lives, providing printing materials, tissue paper, and packaging products. However, the low wet strength of commercially available paper limits its application in packaging, particularly when it comes into contact with liquids. To address this issue, researchers have explored various strategies, including the use of wet strength agents. The most widely used agent, polyamide-epichlorohydrin resin (PAE), has limitations, such as poor dimensional stability and limited recyclability. Additionally, PAE can release harmful chlorinated organics. To overcome these challenges, we report a novel approach using a hyperbranched wet strength agent (referred to as "OA-PI") based on the cross-linking of oxidized amylopectin from waxy corn and polyamines through the Schiff base reaction. The hyperbranched structure of OA-PI provides multiple binding sites, enhancing the cross-linking strength of cellulosic paper under wet conditions. The paper treated with OA-PI exhibited exceptional wet strength, significantly higher than that of PAE-treated paper and paper with traditional starch-based additives. Moreover, the biomass-based OA-PI showed improved recyclability and reduced harm from chlorinated organic compounds. This study not only enhances the wet strength of paper but also opens sustainable avenues for the design of functional adhesives.