PurposeThe purpose of this paper is to develop three methods including artificial bee colony algorithm (ABC-ANN), regression and adaptive neural fuzzy inference system (ANFIS) to predict the environmental indicators for land leveling and to analysis the sensitivity of these parameters.Design/methodology/approachThis paper develops three methods including artificial bee colony algorithm (ABC-ANN), regression and adaptive neural fuzzy inference system (ANFIS) to predict the environmental indicators for land leveling and to analysis the sensitivity of these parameters. So, several soil properties such as soil, cut/fill volume, soil compressibility factor, specific gravity, moisture content, slope, sand per cent and soil swelling index in energy consumption were investigated. A total of 90 samples were collected from three land areas with the selected grid size of (20 m × 20 m). Acquired data were used to develop accurate models for labor, energy (LE), fuel energy (FE), total machinery cost (TMC) and total machinery energy (TM).FindingsBy applying the three mentioned analyzing methods, the results of regression showed that, only three parameters of sand per cent, slope and soil, cut/fill volume had significant effects on energy consumption. All developed models (Regression, ANFIS and ABC-ANN) had satisfactory performance in predicting aforementioned parameters in various field conditions. The adaptive neural fuzzy inference system (ANFIS) has the most capability in prediction according to least RMSE and the highest R2 value of 0.0143, 0.9990 for LE. The ABC-ANN has the most capability in prediction of the environmental and energy parameters with the least RMSE and the highest R2 with the related values for TMC, FE and TME (0.0248, 0.9972), (0.0322, 0.9987) and (0.0161, 0.9994), respectively.Originality/valueAs land leveling with machines requires considerable amount of energy, optimizing energy consumption in land leveling operation is of a great importance. So, three approaches comprising: ABC-ANN, ANFIS as powerful and intensive methods and regression as a fast and simplex model have been tested and surveyed to predict the environmental indicators for land leveling and determine the best method. Hitherto, only a limited number of studies associated with energy consumption in land leveling have been done. In mentioned studies, energy was a function of the volume of excavation (cut/fill volume). Therefore, in this research, energy and cost of land leveling are functions of all the properties of the land including slope, coefficient of swelling, density of the soil, soil moisture, special weight and swelling index which will be thoroughly mentioned and discussed. In fact, predicting minimum cost of land leveling for field irrigation according to the field properties is the main goal of this research which is in direct relation with environment and weather pollution.
Read full abstract