Offline techniques are adopted for studying air pollution health impacts, thus failing to provide in situ observations. Here, we have demonstrated their real-time monitoring by online analyzing an array of gaseous biomarkers from rats' exhaled breath using an integrated exhaled breath array sensor (IEBAS) developed. The biomarkers include total volatile organic compounds (TVOC), CO2, CO, NO, H2S, H2O2, O2, and NH3. Specific breath-borne VOCs were also analyzed by a gas chromatography-ion mobility spectrometer (GC-IMS). After real-life ambient air pollution exposures (2 h), the pollution levels of PM2.5 and O3 were both found to significantly affect the relative levels of multiple gaseous biomarkers in rats' breath. Eleven biomarkers, especially NO, H2S, and 1-propanol, were detected as significantly correlated with PM2.5 concentration, while heptanal was shown to be significantly correlated with O3. Likewise, significant changes were also detected in multiple breath-borne biomarkers from rats under lab-controlled O3 exposures with levels of 150, 300, and 1000 μg/m3 (2 h), compared to synthetic air exposure. Importantly, heptanal was experimentally confirmed as a reliable biomarker for O3 exposure, with a notable dose-response relationship. In contrast, conventional biomarkers of inflammation and oxidative stress in rat sera exhibited insignificant differences after the 2 h exposures. The results imply that breath-borne gaseous biomarkers can serve as an early and sensitive indicator for ambient pollutant exposure. This work pioneered a new research paradigm for online monitoring of air pollution health impacts while obtaining important candidate biomarker information for PM2.5 and O3 exposures.