This study aims to investigate the biodegradation potential of a gut bacterial strain, Bacillus cereus AP-01, isolated from Tenebrio molitor larvae fed Styrofoam, focusing on its efficacy in degrading low-density polyethylene (LDPE). The biodegradation process was evaluated through a series of assays, including clear zone assays, biodegradation assays, and planktonic cell growth assessments in mineral salt medium (MSM) over a 28-day incubation period. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to characterize the alterations in LDPE pellets, followed by molecular characterization. Over three months, sterile soil + LDPE pellets were treated with different concentrations of gut bacterial strain. The degradation capabilities were assessed by measuring pH, total microbial counts, carbon dioxide evolution, weight loss, and conducting phase contrast microscopy and mechanical strength tests. Results demonstrated that MSM containing LDPE as a carbon source with gut bacterial strain produced a clear zone and enhanced planktonic cell growth. FTIR analysis revealed the formation of new functional groups in the LDPE, while SEM images displayed surface erosion and cracking, providing visual evidence of biodegradation. Molecular characterization confirmed the strain as Bacillus cereus AP-01 (NCBI Accession Number: OR288218.1). A 10% inoculum concentration of Bacillus cereus AP-01 exhibited increased soil bacterial counts, carbon dioxide evolution, and pH levels, alongside a notable weight loss of 30.3% in LDPE pellets. Mechanical strength assessments indicated substantial reductions in tensile strength (7.81 ± 0.84 MPa), compression (4.92 ± 0.53 MPa), hardness (51.96 ± 5.62 shore D), flexibility (10.62 ± 1.15 MPa), and impact resistance (14.79 ± 0.94 J). These findings underscore the biodegradation potential of Bacillus cereus AP-01, presenting a promising strategy for addressing the global LDPE pollution crisis.
Read full abstract