Urban development is undergoing rapid growth, and the increasingly prominent environmental protection challenge underscores the crucial need to balance urban vitality development with carbon emissions for sustainable goals. how urban vitality affect carbon emissions? By collecting and analyzing data from 222 prefecture-level cities, utilizing long-time series data from 2011 to 2019, and employing Spatial Durbin Method (SDM) to study. The study explores various dimensions of urban vitality, including economic, social, and population indicators. The direct impact of economic vitality on carbon emissions is negative, while the spillover effect is significantly positive, resulting in an overall positive total effect. There are noticeable spillover effects associated with economic vitality; a rise in one city’s economic vitality may result in a rise in carbon emissions in nearby prefecture-level cities. The reason behind the increase in carbon emissions in nearby metropolitan areas is the departure of some energy-intensive and highly polluting enterprises from the central sections of nearby cities. While enhancing the economic vitality of cities, it is recommended to strive for the development of a green economy, aiming for a sustainable development balance between economic growth and environmental conservation. Population vitality has a favorable impact on carbon emissions both directly and indirectly, with the direct effect being particularly significant. The population expansion of prefecture-level cities exerts a substantial influence on urban carbon emissions. Additionally, social vitality exhibits positive direct and spillover effects on carbon emissions, as well as a significant overall positive effect. Policymakers are urged to prioritize clean energy use while fostering economic growth, prevent high-polluting industries’ migration to neighboring urban areas, manage population expansion, promote environmental awareness, and implement integrated urban planning through collaborative governance for sustainable development.
Read full abstract