This paper proposes the architecture for fault detection and fault-tolerant control for distributed parameter systems with control actuators and measurement sensors. In the development of this architecture, it is assumed that the system contains multiple actuators and sensors with only one actuator and partial sensors are activated while keeping the remaining actuators and sensors dormant. For the approximate finite-dimensional model, a detection observer with a time-varying threshold is proposed to ensure the actuator faults can be detected. An actuator switching policy is used to arrange switching from faulty actuators to healthy ones based on performance enhancement arguments. To facilitate actuator fault diagnosis, an adaptive observer that accommodates actuator fault is designed. Residuals are defined so as to detect the sensor fault. Then, an integrated fault detection and fault-tolerant control architecture of actuators and sensors is taken into account in the implementation of the infinite-dimensional system on the basis of the singular perturbation formulation. Finally, the proposed theoretical results are verified through an example of chemical reaction.
Read full abstract