In this paper polarized light transmission measurements are made under conditions that closely approximate the physiological state in order to probe lamellar structure in the central cornea of New Zealand white rabbits. The results are interpreted with the aid of a newly developed theory (published elsewhere) in which the cornea is modeled as stacked birefringent layers corresponding to the lamellae. The theory enables predictions of the statistical properties of lamellar ordering based on characteristics of the transmission of polarized light. The experimental results are consistent with a structure in which a number of lamellae have a fixed azimuthal orientation (i.e. about an axis normal to the corneal surface), whereas the remainder are essentially randomly oriented. Comparisons with the theoretical predictions are consistent with a model in which the preferred direction in the apical region of the cornea does not vary significantly among rabbits; and the preferred lamellar orientation direction determined for the population measured here is very close to that suggested in previous experiments on a smaller number of rabbits. Mapping experiments using a new goniometric holder showed that the preferential order at the apical region is closely preserved throughout the central ∼4mm diameter optical zone in individual corneas.
Read full abstract