HfO2-based ferroelectric films have been extensively explored and utilized in the field of non-volatile memory and electrical programmability. However, the trade-off between ferroelectric polarization and dielectric constant in HfO2 has limited the overall performance improvement of devices in practical applications. Herein, a novel approach is proposed for the Hf0.5Zr0.5O2/ZrO2 (HZO/ZrO2) nanobilayer engineering, which can effectively regulate the phase structure evolution of HfO2 films to construct a suitable morphotropic phase boundary (MPB). The findings highlight that the top ZrO2 layer can regularly promote the formation of either the ferroelectric o-phase or the antiferroelectric t-phase. An ideal MPB is successfully established in HZO/ZrO2 (6/9 nm) nanobilayer film by carefully optimizing the HZO/ZrO2 thickness ratio, which presents a high dielectric constant of 52.7 and a large 2Pr value of up to 72.3 μC/cm2 without any wake-up operation. Moreover, the HZO/ZrO2 nanobilayer thin films demonstrate faster polarization switching speed (1.09 μs) and better fatigue performance (109 cycles) compared to the conventional HZO solid solution films. The relationship between ferroelectric and dielectric properties can be harmoniously balanced through the designation. The results indicate that the HZO/ZrO2 nanobilayer engineering strategy is quite potential to pave the way for the development of next-generation memory technologies with superior performance and reliability.