To demonstrate the ability of a new high-speed polarization-sensitive optical coherence tomography (PS-OCT) system for retinal imaging at 1040 nm. A new polarization-sensitive swept source OCT system in the 1 μm wavelength range is used to image the retina of healthy volunteers. The instrument is operated at an A-scan rate of 100 kHz which is about three times faster than previously reported PS-OCT instruments in this wavelength region. The increased imaging speed can be used to record densely sampled volumes of the retina. Moreover, it enables averaging of several B-scans recorded at the same location to obtain high-definition B-scans without the use of an eye tracker. Polarization-sensitive images of healthy volunteers clearly show the retinal pigment epithelium as a depolarizing layer. In addition, the good tissue penetration of the system allows the visualization of the sclera, which is highly birefringent and therefore shows increased image contrast with PS-OCT. PS-OCT in the 1 μm wavelength region shows similar polarization effects as in the 840 nm wavelength range. The high speed enables averaging of several B-scans to obtain high-definition polarization-sensitive images. The new system provides excellent penetration depth into the choroid and sclera.
Read full abstract