Due to the effective development of ion-track technology, it became possible to produce porous templates with large areas, which are of interest for mass production of nanostructures. Given that the template parameters often define properties of the resulting nanostructures and nanosystems, a reliable method for non-destructive testing is needed for a rapid control of template parameters. Such method could be ellipsometry, allowing for a single measurement to collect statistical information from a large area and to save time for certification. In order to adapt the ellipsometry method for controlling the parameters of ion-track patterns, the first studies of SiO2/Si templates with low porosity were carried out. Using the standard model of the interaction of a polarized light beam with a layered structure of silicon oxide on silicon, the basic parameters of the pores were determined by means of mathematical transformations and subsequently compared with the results of scanning electron microscopy.
Read full abstract