We investigate theoretically the quantum oscillator-like states recently observed experimentally in polariton condensates. We consider a complex Gross–Pitaevskii-type model that includes the effects of self-interactions, and creation and decay of exciton-polaritons. We develop a perturbation theory for approximate solutions to this non-equilibrium condensate model and compare the results with numerically calculated solutions for both repulsive and attractive polariton–polariton interactions. While the nonlinearity has a weak effect on the mode selection, the condensate density profiles are modified at moderate gain strengths. We find the nonlinearity becomes more dominant when a very large gain of polaritons leads to an extended cloud with high condensate densities. Finally, we identify the relation of the observed patterns to the input pump configuration, and suggest this may serve as a generalized NOR gate in the tradition of optical computing.
Read full abstract