The Mesozoic subduction zone over the Dongsha Waters (DSWs) of the South China Sea (SCS) is a part of the westward subduction of the ancient Pacific plate. Based on the comprehensive interpretation of deep reflection seismic profile data and polar magnetic anomaly data, and the zircon dating results of igneous rocks drilled from well LF35-1-1, the Mesozoic subduction zone in the northeast SCS is accurately identified, and a Mesozoic subduction model is proposed. The accretion wedges, trenches, and igneous rock zones together form the Mesozoic subduction zone. The evolution of the Mesozoic subduction zone can be divided into two stages: continental subduction during the Late Jurassic and continental collision during the late Cretaceous. The Mesozoic subduction zone controlled the structural pattern and evolution of the Chaoshan depression (CSD) during the Mesozoic and Neogene eras. The gas source of the hydrate comes from thermogenic gas, which is accompanied by mud diapir activity and migrates along the fault. The gas accumulates to form gas hydrates at the bottom of the stable domain; BSR can be seen above the mud diapir structure; that is, hydrate deposits are formed under the influence of mud diapir structures, belonging to a typical leakage type genesis model.
Read full abstract