In this study, a general three-component polarimetric SAR interferometry (PolInSAR) target decomposition framework is proposed by modifying the existing generalized surface, double-bounce, and volume models. The resulting general models are then compared to the original Freeman-Durden modeling strategy. Three types of generalized volume scattering models (generalized volume scattering model (GVSM), simplified Neumann volume scattering model (SNVSM) and simplified adaptive volume scattering model (SAVSM)) were employed. Simulated L-band PolInSAR data over deciduous and pine forest stands generated by PolSARpro and DLR P-band airborne PolInSAR data over a tropical forest area from the AfriSAR 2016 campaign were used for performance analysis. A qualitative comparison of the decomposition results shows that the three generalized volume scattering models generally deviate from the Freeman-Durden model, showing that the GVSM and SNVSM models have very similar results. In the case of airborne data over tropical forests, a tomographic synthetic aperture radar (TomoSAR) profile was also computed and used as a benchmark for comparison with the phase-center profiles of all four volume-scattering components. Not only do the GVSM and SNVSM models exhibit similar results between them (as with simulated data), but also a better match with the HV TomoSAR profile.
Read full abstract