Abstract

A number of advanced SAR missions have been planned to launch, which can operate in fully polarimetric SAR interferometry mode to acquire structural parameters of global forests. Before the PolInSAR mission, the system configuration of vertical wavenumber kz must be carefully designed because it has a significant impact on the inversion performance. To minimize the estimation error of forest height caused by the system error from the future PolInSAR campaigns, it is valuable for us to optimize the vertical wavenumber. To quantitatively investigate the impact of kz on PolInSAR inversion performance, this paper proposes the optimization of kz based on the Cramér–Rao Lower Bound (CRLB) analysis. Extensive numerical CRLB simulations have been conducted to analyze the impact of several parameters, including extinction level, incident angle, and system decorrelation, etc., on the optimum kz. Finally, by minimizing the simulated CRLB, the numerical optimum kz maps are provided for the system engineers to easily design the system parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call