This study aims to explore the joint usage of multisource scatterometer measurements in polar sea water and ice discrimination. All radar backscatter measurements from current operating satellite scatterometers are considered, including the C-band ASCAT scatterometer on board the MetOp series satellites, the Ku-band scatterometer on board the HY-2B satellite (HSCAT), and the Ku-band scatterometer on board the CFOSAT satellite (CSCAT). By performing seven experiments that use the same support vector machine (SVM) classifier method but with different input data, we find that the SVM model with all available HSCAT, CSCAT, and ASCAT scatterometer data as inputs gives the best performance. In addition to the SVM outputs, we employ the image erosion/dilation techniques and area growth method to reduce misclassifications of sea water and ice. The sea ice extent obtained in this study shows a good agreement with the National Snow and Ice Data Center (NSIDC) sea ice concentration data from the years 2019 to 2021. More specifically, the sea ice areas are closer to the sea ice areas calculated using 15% as the threshold for NSIDC sea ice concentration data in both Arctic and Antarctic. The sea ice edges acquired by the multisource scatterometer show a close correlation with sea ice edges from the Sentinel-1 Synthetic Aperture Radar (SAR) images. In addition, we found that the coverage of multisource scatterometer data in a half-day is usually above 97%, and more importantly, the sea ice areas obtained on the basis of half-day and daily multisource scatterometer data are very close to each other. The presented work can serve as guidance on the usage of all available scatterometer measurements in sea ice monitoring.
Read full abstract