A flow-line model is coupled to a 2D temperature model to simulate the thermodynamic changes of Jutulstraumen drainage basin due to grounding line retreat and increased surface temperature since the Last Glacial Maximum (LGM). The basin consists of a plateau drained by an outlet glacier, and the simulated ice volume reductions are 1% and 2% respectively of the current grounded volume. The mountain ranges H.U. Sverdrupfjella and Neumayerskarvet fringing the plateau were not overridden by ice at the LGM, while the Nashornet nunataks closer to the grounding line were. Today the glacier is almost in balance with the current climate, with the highest thinning rate < 5.0×10−3 ma−1 at the plateau. The simulated present-day thermal regime of the outlet glacier shows a basal layer at the pressure melting point and negative temperature gradients with depth due to horizontal advection of cold ice from the plateau. Sensitivity studies show that strain heating and horizontal advection are important for the basal temperatures in the fast flowing outlet glacier and for about half of the wide basin at the polar plateau. Increased strain heating and horizontal advection since the LGM control the response time required to readjust to the new conditions, and it controls the present-day volume.