Genome size variation can be used to investigate biodiversity, genome evolution, and taxonomic relationships among related taxa. Plant breeders use genome size variation to identify parents useful for breeding sterile or improved ornamentals. Lilacs (Syringa) are deciduous trees and shrubs valued for their fragrant spring and summer flowers. The genus is divided into six series: Syringa (Vulgares), Pinnatifoliae, Ligustrae, Ligustrina, Pubescentes, and Villosae. Reports conflict on genome evolution, base chromosome number, and polyploidy in lilac. The purpose of this study was to investigate genome size and ploidy variation across a diverse collection. Flow cytometry was used to estimate monoploid (1Cx) and holoploid (2C) genome sizes in series, species, cultivars, and seedlings from parents with three ploidy combinations: 2x x 2x, 2x x 3x, and 3x x 2x. Pollen diameter was measured to investigate the frequency of unreduced gametes in diploid and triploid Syringa vulgaris cultivars. Three triploids of S. vulgaris were observed: ‘Aucubaefolia’, ‘Agincourt Beauty’, and ‘President Grévy’. Across taxa, significant variations in 1Cx genome size were discovered. The smallest and largest values were found in the interspecific hybrids S. ×laciniata (1.32 ± 0.04 pg) and S. ×hyacinthiflora ‘Old Glory’ (1.78 ± 0.05), both of which are in series Syringa. Series Syringa (1.68 ± 0.02 pg) had a significantly larger 1Cx genome size than the other series. No significant differences were found within series Pubescentes (1.47 ± 0.01 pg), Villosae (1.55 ± 0.02 pg), Ligustrina (1.49 ± 0.05 pg), and Pinnatifoliae (1.52 ± 0.02 pg). For S. vulgaris crosses, no significant variation in 2C genome size was discovered in 2x x 2x crosses. Interploid crosses between ‘Blue Skies’ (2x) and ‘President Grévy’ (3x) produced an aneuploid population with variable 2C genome sizes ranging from 3.41 ± 0.03 to 4.35 ± 0.03 pg. Only one viable seedling was recovered from a cross combination between ‘President Grévy’ (3x) and ‘Sensation’ (2x). This seedling had a larger 2C genome size (5.65 ± 0.02 pg) than either parent and the largest 2C genome size currently reported in lilac. ‘Sensation’ produced 8.5% unreduced pollen, which we inferred was responsible for the increased genome size. No unreduced pollen was discovered in the other diploids examined. Increased ploidy may provide a mechanism for recovering progeny from incompatible taxa in lilac breeding.