The development of a parallel three-dimensional (3-D) adaptive mesh refinement (PAMR) scheme for an unstructured tetrahedral mesh using dynamic domain decomposition on a memory-distributed machine is presented in detail. A memory-saving cell-based data structure is designed such that the resulting mesh information can be readily utilized in both node- or cell-based numerical methods. The general procedures include isotropic refinement from one parent cell into eight child cells and then followed by anisotropic refinement which effectively removes hanging nodes. A simple but effective mesh-quality control mechanism is employed to preserve the mesh quality. The resulting parallel performance of this PAMR is found to scale approximately as N 1.5 for N proc ⩽ 32 . Two test cases, including a particle method (parallel DSMC solver for rarefied gas dynamics) and an equation-based method (parallel Poisson–Boltzmann equation solver for electrostatic field), are used to demonstrate the generality of the PAMR module. It is argued that this PAMR scheme can be applied in any numerical method if the unstructured tetrahedral mesh is adopted.