Sugar is the sole diet for male mosquitoes and a complementary meal for females. Searching for natural sources of sugar is mediated by semiochemicals. Floral nectars, extra floral nectaries, damaged tissues of plants and rotten fruits are the most common sources of sugar in nature. I provide laboratory evidence of the high attraction of Parthenium hysterophorus L., a weed that grows in tropical climates, to Anopheles gambiae Giles. This study has tried to identify the chemicals which might be involved in the chemical attraction of A. gambiae to this plant. Using quantitative GC-MS analysis, α-pinene, camphene, 1-octen-3-ol, β-pinene, cis-β-ocimene, bornyl acetate, α-caryophyllene, hexadecanoic acid, and α-linolenic acid were identified as the main constituents of P. hysterophorus volatiles. Successive olfactory assays helped a better understanding of the more attractive chemicals of P. hysterophorus to A. gambiae which was the basis for testing a possible synthetic blend. Olfactory experiments proved this synthetic blend to be as attractive as Parthenium intact plants for A. gambiae. A minimal blend, consisting of only α-pinene, camphene, and cis-β-ocimene, was also produced and laboratory experiments indicated its relative attraction for A. gambiae. This blend can be tested in the attractive toxic sugar bait stations for sampling, surveillance, or control programs of mosquitoes in tropical Africa, where A. gambiae sensu stricto transfer malaria among residents.