Automatic detection of railroad infrastructure using Mobile Laser Scanning systems is a key technology for both advanced rail driver assistance and intelligent track maintenance. The recent research into railway facility extraction or condition monitoring usually relies on high-density point cloud dataset with known sensor parameters but ignores the processing performance in actual deployment and has high requirements for the acquisition device. To address these limitations, a novel rail extraction algorithm is proposed for processing Mobile Laser Scanning data in real time during acquisition, which could extract rail features by a hierarchical coarse-to-fine method with basic structural parameters. Using the geometric and global statistical characteristics of rail in raw data, a new rail descriptor is defined based on the quantitative statistics of points satisfying height difference in generalized local neighborhood. The approach is evaluated experimentally by a simulated real-time acquisition data and compared with a reference method. The experimental results show that the proposed algorithm has a finer extraction effect and good real-time performance.
Read full abstract