Drought stress occurring during flowering and early pod expansion decreases pod set in soybean (Glycine max L. Merr.). The failure of pod set may be associated with changes in water status and ABA content in soybean reproductive structures under drought stress. To test this, pot experiments in an environmentally-controlled greenhouse were conducted, in which soybeans were exposed to drought stress around anthesis. In a preliminary experiment (Expt. I), irrigation was withheld at -6 (D1), -4 (D2) and -2 (D3) to 11 days after anthesis (DAA), then the droughted plants were re-watered to control levels until physiological maturity. Pod set percentage, seed yield and yield components were recorded. In the main experiment (Expt. II), irrigation was withheld from -11 to 10DAA. During the drying cycle, parts of the droughted plants were re-watered at 0, 3, 5, 7 and 10 DAA and kept well-watered until physiological maturity. In Expt. II, water status, ABA contents in xylem sap, leaves, flowers and pods were measured at 0, 3, 5, 7 and 10 DAA. The water potential in the flowers and pods was always lower than the leaf water potential. Turgor was decreased in leaves by drought 3 DAA, but remained at control levels in flowers and pods. Compared with well-watered plants, in severely droughted plants (10 DAA), xylem [ABA] increased about 60-fold; leaf [ABA] increased 9-fold; pod [ABA] increased 6-fold. During soil drying, flower and pod [ABA] was linearly correlated with xylem [ABA] and leaf [ABA], indicating that root-originated ABA and/or leaf ABA were the likely sources of ABA accumulated in the flowers and pods. In Expt. I, pod set and seed number per pod was unaffected by drought stress, while seed yield and individual seed weight was significantly decreased by drought. In Expt. II, significant reductions in pod set and seed yield were observed when re-watering the droughted plants at 3-5 DAA, re-watering the droughted plants later than this stage resulted in a similar pod set. Collectively, these results suggest that drought-induced decrease in water potential and increase in ABA content in flowers and pods at critical developmental stage (3-5 DAA) contribute to pod abortion in soybean.