This study was carried out to investigate the chemical, mechanical, and structural properties of increasing amounts of fumed silica added to PMMA denture base material. The effect of adding fumed silica at three different concentrations (0.5%, 1%, and 2% by weight) to PMMA was studied using Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), density, flexural strength, hardness, atomic force microscopy (AFM), and scanning electron microscopy (SEM). The results showed that the highest flexural strength values (105.64 MPa) and hardness (20.07 microvickers) were obtained with 1% wt. of fumed silica material. According to DMA results, fumed silica samples containing 1% wt. had the highest energy storage (3.24 GPa at 30 °C) and glass transition temperature. As a result, fumed silica in PMMA denture base material reached its maximum saturation limit at 1% wt. A more brittle behavior was observed in samples containing 2% fumed silica, which accumulated on the surface, as confirmed by AFM. The molecular bonds at the resin-fumed silica interface weaken due to the agglomeration of fumed silica. Consequently, the flexural strength and hardness decrease, along with the glass transition temperature and storage modulus. The potential applications of this research are vast, inspiring further exploration and innovation in denture-based materials.
Read full abstract