Fine particulate matter (PM2.5) is known to contribute to adverse health effects, such as asthma, cardiopulmonary disease, and lung cancer. Secondary organic aerosol (SOA) is a major component of PM2.5 and can be enhanced by atmospheric oxidation of biogenic volatile organic compounds in the presence of anthropogenic pollutants, such as nitrogen oxides (NOx) and sulfur dioxide. However, whether biogenic SOA contributes to adverse health effects remains unclear. The objective of this study was to assess the potential of isoprene-derived epoxides and SOA for generating reactive oxygen species (ROS) in light of the recent recognition that atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol is a major contributor to the global SOA burden. The dithiothreitol (DTT) assay was used to characterize the ROS generation by the isoprene-derived epoxides, trans-β-isoprene epoxydiol (trans-β-IEPOX) and methacrylic acid epoxide (MAE), and their hydrolysis products, the 2-methyltetrol diastereomers (2-MT), 2-methylglyceric acid (2-MG), their organosulfate derivatives, as well as an isoprene-derived hydroxyhydroperoxide (ISOPOOH). In addition, ROS generation potential was evaluated for total SOA produced from photooxidation of isoprene and methacrolein (MACR) as well as from the reactive uptake of trans-β-IEPOX and MAE onto acidified sulfate aerosol. The high-NOx regime, which yields 2-MG-, MAE- and MACR-derived SOA has a higher ROS generation potential than the low-NOx regime, which yields 2-MT, IEPOX- and isoprene-derived SOA. ISOPOOH has an ROS generation potential similar to 1,4-naphthoquinone (1,4-NQ), suggesting a significant contribution of aerosol-phase organic peroxides to PM oxidative potential. MAE- and MACR-derived SOA show equal or greater ROS generation potential than reported in studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA.
Read full abstract