Chemotherapy is one of the most important ways to treat cancer. At present, chemotherapy medicines are mainly administered by intravenous injection or oral administration. However, systemic medical care requires the dosage of high concentrations of drugs to defeat the malignant tumor growth. In recent years, the use of polymer composites for local and sustained drug release has become an important field of research to minimize side effects due to high-concentration chemotherapy drugs. Here, 19F-{1H} heteronuclear Overhauser enhancement spectroscopy (HOESY) was used to study the micellular environment of the F-containing chemotherapeutic drug 5-FU in Pluronic F127, Pluronic L121, and F127/L121 binary blending composites. The distribution of 5-FU in micelles is related to the PEO and PPO segment length of Pluronic polymers and the environmental temperature. The drug release tests further confirm that if 5-FU medicines were loaded in the PPO segment inside the micelles, the purpose of the prolonged drug release carrier is achieved.
Read full abstract