Recently, the intelligent platoon has attracted a lot of attention in both academic and industrial research. For each intelligent platoon, all vehicles drive sequentially in a line, which helps to improve fuel economy and road capacity. Consider two adjacent vehicles in the intelligent platoon, and there is no mechanical boundary between them. However, an intelligent platoon may still suffer from the issues of poor vehicle-following performance during the process of vehicle-following, especially when it obtains its own position and other parameters inaccurately. To address this issue, this paper proposes a model predictive control method based on an improved version of Kalman filtering, aiming to enhance the anti-interference capacity of intelligent platoons in scenarios where the following vehicles have acquired inaccurate parameters resulting from environmental disturbances and sensor noise. Firstly, this paper establishes a three-degree-of-freedom single-track model for the following vehicle, conducting dynamic analysis of its lateral, longitudinal, and yaw movements. Then, this paper develops a horizontal and longitudinal formation driving control frame of the intelligent vehicle platoon. Moreover, this paper also has employed Kalman filtering for interference reduction of state parameters and designs an improved model predictive controller. The proposed scheme is verified and evaluated through a joint simulation within Carsim and MATLAB/Simulink, and the results demonstrate that the longitudinal following error is reduced by 37% and the lateral following error is reduced by 51% compared to traditional algorithms, effectively improving the stability of intelligent vehicle platoons during following driving.
Read full abstract