Heparin-loaded mesoporous-expanded poly(tetrafluoroethylene) (ePTFE) vascular prosthesis (HMVP-n) are prepared and the biocompatibility is studied by contact angle, heparin release, platelet resistance, chromogenic assay, endothelial progenitor cells (EPCs) proliferation and produced-NO function, in order to illustrate the relationship between the performance of artificial vessels and their mesostructure. Through in situ synthesis of mesoporous silica on ePTFE grafts, different mesoporous silica materials can be uniformly coated on the surface as well as the internal fibers of the artificial vessels to give various mesoporous vascular prosthesis, named as MVP-n. Structure analysis through scanning electron microscopy (SEM), energy dispersive X-ray detector (EDX) analysis and nitrogen sorption experiment indicates that different MVP-n series own the similar nF/nSi ratio of both surface and cross-section, large Brunauer-Emmett-Tellerand (BET) surface area and average pore size located in meso range but different textural properties. Owning to the existence of mesostucture, controlled release and high bioactivity of heparin can be achieved, and the biocompatibility greatly enhance: surface hydrophilicity increases; no adherent platelet was observed on the surface of HMVP-n when they contacted with platelet-enriched plasma; endothelial progenitor cells proliferous potential and produced-NO function exhibit better endothelial coverage of grafts. And the performance is closely related to the mesostructure, suggesting a new way to improve the biocompatibility of biomaterials through controlling their mesostructure.
Read full abstract