The role of peripheral blood platelets as indicators of cancer progression is increasingly recognized, and the significance of abnormal glycosylation in platelet function and related disorders is gaining attention. However, the potential of platelets as a source of protein site-specific glycosylation for cancer diagnosis remains underexplored. In this study, we proposed a general pipeline that integrates quantitative proteomics with site-specific glycoproteomics, allowing for an in-depth investigation of the platelet glycoproteome. With this pipeline, we generated a data set comprising 3,466 proteins with qualitative information, 3,199 proteins with quantitative information, 3,419 site-specific glycans with qualitative information and 3,377 site-specific glycans with quantitative information from peripheral blood platelets of hepatocellular carcinoma (HCC) patients, metastatic liver cancer (mLC) patients, and healthy controls. The integrated analysis revealed significant changes in platelet protein N-glycosylation in liver cancer patients. Further systems biology analysis and lectin pull-down-coupled ELISA assays in independent clinical samples confirmed two N-glycoproteins with specific glycan types, complement C3 (C3) with oligomannose modification and integrin β-3 (ITGB3) with sialylation, as potential biomarkers distinguishing liver cancer patients from healthy individuals, without differentiating between HCC and mLC patient group. These findings highlight the potential of platelet protein glycosylation as biomarkers.
Read full abstract