Superabsorbent nanocomposite hydrogels based on polyacrylamide (PAAm), cashew tree gum (CG), and laponite (LAP) were synthesized in different concentrations to investigate swelling, thermal, morphological and rheological properties. Vibrational modes confirmed the formation of hydrogels, while X-ray diffraction patterns reveal the semi-crystalline structure of the hydrogels. Thermal analysis showed that higher LAP content and CG-LAP interactions improved the thermal stability of the hydrogels. Morphology analysis presented porous structures in CG-based hydrogels, contrasting with irregular plate-like structures in those without CG. The swelling capacity had better results in hydrogels with CG that were subjected to alkaline hydrolysis, mainly in a buffer solution with a pH > 4, due to the ionization of the hydrophilic groups. Hydrogels containing LAP maintained swelling degree stability at pH 10 and 12. In rheological tests, the addition of LAP increased the viscosity of the hydrogels, significantly improving the mechanical resistance of the hydrogels. Rheological parameters, such as the storage modulus (G') and loss modulus (G″), indicated that the materials exhibited predominantly solid behavior, particularly in CG-LAP-rich hydrogels. Low mortality of Artemia salina nauplii in toxicity tests confirmed material safety. The results indicate that CG-LAP hydrogels are promising for agricultural applications, offering optimized swelling properties, thermal stability, and mechanical strength.
Read full abstract