I collect virtually all photometry of the ten known galactic recurrent novae (RNe) and their 37 known eruptions. This consists of my modern measures of nearly all archival plates (providing the only data for half of 37 known eruptions), my own 10,000 CCD magnitudes from 1987 to present (providing virtually all of the magnitudes in quiescence for seven RNe), over 140,000 visual magnitude estimates recorded by amateur astronomers (who discovered half the known eruptions), and the small scattering of magnitudes from all the literature. From this, I produce various uniform products; (1) BVRIJHK comparison star magnitudes and BV comparison star sequences to cover the entire range of eruption, (2) complete light curves for all eruptions, (3) best fit B and V light curve templates, (4) orbital periods for all-but-one RN, (5) exhaustive searches for all missed eruptions, (6) measured discovery efficiencies since 1890, (7) true recurrence time scales, (8) predicted next eruption dates, (9) variations on time scales of minutes, hours, days, months, years, decades, and century, (10) uniform distances and extinctions to all RNe, (11) BV colors at peak and UBVRIJHK colors at minimum all with extinction corrections, and (12) the spectral energy distributions over UBVRIJHK. Highlights of this work include the discoveries of one new RN, six previously-undiscovered eruptions, and the discovery of the orbital periods for half the RNe. The goal of this work is to provide uniform demographics for answering questions like the `What is the death rate of RNe in our galaxy?' and `Are the white dwarfs gaining or losing mass over each eruption cycle?'. An important use of this work is for the question of whether RNe can be the progenitors of Type Ia supernovae.
Read full abstract