Environmental concerns associated with the rapid rising plastic consumption have led to the search for better waste utilization and management. Pyrolysis has emerged as an ideal and promising technique for energy extraction from plastic waste. The aim of this work is to explore the waste plastic pyrolysis behavior under non-isothermal heating conditions. The decomposition characteristics, reaction mechanism, kinetics and thermodynamics of a typical widely used thermosetting plastic, acrylonitrile butadiene styrene (ABS), were studied via coupled thermogravimetry, Fourier transform infrared spectrometry and gas chromatography-mass spectrometry analysis (TG-FTIR-GC/MS). Kinetic analysis showed the average Eα values are estimated to be 187.02, 188.55, 187.04 and 185.67 kJ/mol via advanced Vyazovkin, Flynn-Wall-Ozawa (FWO), Tang and Starink model-free method, respectively. Model-fitting CR and master-plots method indicated that f(α)=(1-α)n is the most probable reaction mechanism. The equation of kinetic compensation effect was further developed as lnA = −3.1955 + 0.1736 Eα. Based on these initial inferences, a new reaction scheme coupled with Particle Swarm Optimization (PSO) was put forward for modeling ABS pyrolysis. The optimized values of E, A and n are 198.07 kJ/mol, 7.61 × 1012 s−1 and 1.56, respectively. The predicted results showed that the experimental data can be well characterized by the optimized parameters from PSO, validating the effectiveness and accuracy of the inverse modeling procedure. Moreover, it is found that the volatile products are mainly composed of aromatic compounds, ketones, amines, esters, nitrile compounds, alkenes and amines. Based on the FT-IR and GC-MS results, the possible chemical reactions for ABS pyrolysis from molecular structure were proposed. Finally, thermodynamic analysis was carried out, the calculated values of enthalpy ΔH, Gibb's free energy ΔG and entropy ΔS indicated that non-spontaneous reactions with low favorability exists during ABS decomposition, the process is complex therefore extra energy is needed to promote the reaction. The obtained results should offer as an important reference for future disposal and thermochemical management of such polymer waste.