Plastic packaging has increased concerns about human health and the ecosystem due to non-biodegradability. Several biopolymers, such as cellulose, starch, and proteins, are being explored, and cellulosic residue from agricultural biomass is suitable to overcome this predicament. Herein, cellulosic residue fibers (ACR) extracted from alfalfa were used to prepare biodegradable films by solubilizing them in ZnCl2 solution and crosslinking the chains with calcium ions (CaCl2) and sorbitol. Box Behnken Design optimized the ACR, CaCl2, and sorbitol amounts against the responses of water vapor permeability (WVP), tensile strength (TS), and elongation at break (EB). The optimized film combination was found to be 0.5 g ACR, 461.3 mM CaCl2, and 1.05 % sorbitol, making a 12 × 12 cm2 film, with a TS of 16.9 ± 0.4 MPa, EB of 10.1 ± 0.3 %, and WVP of 0.47 ± 0.11×10-10 g.m-1.s-1.Pa-1. It was translucent, blocked UVB light, followed Peleg's water absorption kinetics, displayed anti-oxidant activity, and biodegraded within 35 days at 24 % soil moisture. The ACR film extends the shelf life of strawberries by two more days compared to polystyrene film. The outcome offers a novel path to utilize and conserve natural resources and mitigate plastic perils, promoting a circular bioeconomy and sustainability and a win-win situation between the environment and farmers.
Read full abstract