ABSTRACT The paper reports the results of laboratory experiments to investigate the effect of vegetation patch mosaics on hydraulic resistance. Experiments were run for seven levels of vegetation coverage with square patches of flexible plastic grass in aligned and staggered configurations and a wide range of hydraulic conditions. Hydraulic resistance was substantially higher for staggered than aligned configurations, particularly for intermediate ranges of vegetation coverage. The results indicate that hydraulic resistance differs between regimes of isolated roughness flow, wake interference flow, and skimming flow. Two types of models are proposed to predict hydraulic resistance (i.e. Manning’s coefficient n) for aligned and staggered configurations, one as a function of the nondimensional spatially-averaged hydraulic radius and another as a function of relative submergence and surface area blockage factor. To account for the effects of vegetation patch alignment, an additional factor α is introduced. This work provides comprehensive datasets and models that can be used to improve the prediction of hydraulic resistance in open-channel flows with vegetation patches.