ABSTRACT We determined the dose distribution within a tray of highbush blueberries (Vaccinium corymbosum L.) exposed to electron beam irradiation at medium levels (1.0–3.2 kGy) using Monte Carlo and computer tomography scanning technology. We also evaluated the quality of irradiated and nonirradiated (control) fruits stored at 5C and 70% relative humidity during 14 days by a series of chemical analyses. Blueberries packed in plastic clamshell containers (trays) were irradiated using a 10‐MeV linear accelerator with single‐beam fixture (top only). Irradiation of blueberries at 1.1 kGy had no significant (P > 0.05) effect on the fruit quality with the exception of ascorbic acid, which decreased by 17% by the end of storage. Irradiation had an enhancing effect on the total phenolic and tannin content of all the irradiated fruits (10–20% increases). The calculated dose distribution in a pack of blueberries confirmed that the dose is not uniformly distributed within the pack because of density inhomogeneities (flesh, skin air). Dose levels at the bottom of the trays were 18 (±8%) higher than at the top. These results suggest that careful dose distribution examination must be conducted prior to setting up of an irradiation run for the packed fruits. Excellent agreement was found between measured and calculated doses at different electron beam conveyor speeds.PRACTICAL APPLICATIONSLittle information is available on how electron beam irradiation penetrates a complex medium such as packed blueberries. This study presents unique results from a dose distribution calculation method using Monte Carlo simulation and computed tomography scanning techniques, which can be an effective tool for the development of proper irradiation treatment planning of packed fruits and other fresh produce. The suitability of using electron beam technology to preserve the quality characteristics and shelf life of packed blueberries was verified.