The sex pheromone plasmids in Enterococcus faecalis are one of the most efficient conjugative plasmid transfer systems known in bacteria. Plasmid transfer rates can reach or exceed 10(-1) transconjugants per donor in vivo and under laboratory conditions. We report the completion of the DNA sequence of plasmid pCF10 and the analysis of the transcription profile of plasmid genes, relative to conjugative transfer ability following pheromone induction. These experiments employed a mini-microarray containing all 57 open reading frames of pCF10 and a set of selected chromosomal genes. A clear peak of transcription activity was observed 30 to 60 min after pheromone addition, with transcription subsiding 2 h after pheromone induction. The transcript activity correlated with the ability of donor cells to transfer pCF10 to recipient cells. Remarkably, aggregation substance (Asc10, encoded by the prgB gene) was present on the cell surface for a long period of time after pheromone-induced transcription of prgB and plasmid transfer ability had ceased. This observation could have relevance for the virulence of E. faecalis.