The excitation of magnetorotational instability (MRI) in rotating laboratory plasmas is investigated. In contrast to astrophysical plasmas, in which gravitation plays an important role, in laboratory plasmas it can be neglected and the plasma rotation is equilibrated by the pressure gradient. The analysis is restricted to the simple model of a magnetic confinement configuration with cylindrical symmetry, in which nonaxisymmetric perturbations are investigated using the local approximation. Starting from the simplest case of an ideal plasma, the corresponding dispersion relations are derived for more complicated models including the physical effects of parallel and perpendicular viscosities. The Friemann–Rotenberg approach used for ideal plasmas is generalized for the viscous model and an analytical expression for the instability boundary is obtained. It is shown that, in addition to the standard effect of radial derivative of the rotation frequency (the Velikhov effect), which can be destabilizing or stabilizing depending on the sign of this derivative in the ideal plasma, there is a destabilizing effect proportional to the fourth power of the rotation frequency, or, what is the same, to the square of the plasma pressure gradient, and to the square of the azimuthal mode number of the perturbations. It is shown that the instability boundary also depends on the product of the plasma pressure and density gradients, which has a destabilizing effect when it is negative. In the case of parallel viscosity, the MRI looks like an ideal instability independent of viscosity, while, in the case of strong perpendicular viscosity, it is a dissipative instability with the growth rate inversely proportional to the characteristic viscous decay rate. We point out, however, that the modes of the continuous range of the magnetohydrodynamics spectrum are not taken into account in this paper, and they can be more dangerous than those that are considered.