The present article describes the blood flow in a catheterized artery with radially symmetric and axially asymmetric stenosis. To understand the effects of red cell concentration, plasma layer thickness and catheter size simultaneously, blood is considered by a two-layered model comprising a core region of suspension of all the erythrocytes (particles) supposed to be a particle-fluid mixture and a peripheral zone of cell-free plasma. The analytical expressions for flow features, such as fluid phase and particle phase velocities, flow rate, wall shear stress and resistive force are obtained. It is witnessed that the presence of the catheter causes a substantial increase in the frictional forces on the walls of arterial stenosis and catheter, shear stress and flow resistance, in addition to that, have occurred due to the presence of red cells concentration (volume fraction density of the particles) and the absence of peripheral plasma layer near the wall of the stenosed artery. The introduction of an axially asymmetric nature of stenosis and plasma layer thickness causes significant reduction in flow resistance. One can notice that the two-phase fluid (suspension model) is more profound to the thickness of peripheral plasma layer and catheter than the single-phase fluid.